Precision Agriculture and Precision Conservation

Dimitris Zermas¹, David Mulla², Daniel Kaiser², Ce Yang², Mike Bazakos¹, Vassilis Morellas¹, Nikolaos Papanikolopoulos¹ ¹Center for Distributed Robotics and ²Department of Soil, Water, and Climate (Precision Agriculture Center)

Project Rationale

Minnesota Agricultural Statistics

- \$700 million/yr for nitrogen fertilizer (700,000 tons)
- \$4.2 billion corn yield/yr (1.18 billion bushels)

<u>Issues</u>

- Excess nitrogen pollutes surface and ground water
- 20% yield loss because of nitrogen deficiency

<u>Goals</u>

- Improve water quality (i.e. the Mississippi river)
- Reduce nitrogen fertilizer
- Improve crop yield (gain \$835 million)

Precision Agriculture

A management practice applied at the right rate, right time and the right place. Field sub-region management

- Nutrients
- Drainage or Irrigation
- Pests and Weeds
- Tillage and Seeding Operations

Precision Ag

(Individual Field Focus)

Benefits of Precision Agriculture

Use of UAVs in Minnesota agriculture could lead to a thousand new jobs and nearly \$150 million being pumped into the economy (Dept. **Employment Econ. Development**)

Robots in Precision Agriculture

Unmanned aerial vehicles (UAV)Unmanned ground vehicles (UGV)

Properties of N Deficient Plants

- Green reflectance increases
- Red reflectance increases & NIR reflectance decreases
- Differences in reflectance greatest between 550 – 600 nm, followed by red-edge (680 – 730 nm)

Nitrogen Sufficiency Index (NSI)

NSI =

Leaf N, or Spectral index

x100%

Reference value

Precision Variable Rate Nitrogen Management (VRN)

Dynamic In-Season N Management

Problem Definition / Motivation

Automate corn field surveillance for the early detection and inseason treatment of crop nitrogen stress.

Methodology

Detect potential stressed areas
Identify areas with nitrogen deficiency
Determine stress severity

Low Altitude Imaging

 High resolution images provide a close up view of the plants and their foliage, allowing a diagnosis of the type and severity of crop deficiency

Image of healthy plants

Image of N deficient plants

High Resolution Approach

Fly low and pay attention to the details!

Column Scan

Corn Leaf Analysis

N Stress Detection

Commercialization

•We are discussing commercialization of our research with several Minnesota companies that focus their business on ground robots, software, or sensors

Conclusions

- Precision agriculture has exhibited enormous growth around the world since its beginning in the mid-1980's
- This growth was driven by technological advances associated with the growing availability of computers, geographic information systems, global positioning satellites and remote sensing
- Precision agriculture will continue to grow because of new innovations in robotics, leading to economic expansion and new jobs

Acknowledgements

This work was sponsored by the Minnesota Corn Growers Assoc., the NSF-NRI, and the MnDrive program.

Thank you!

Questions?

